
Natural language query to SQL

Introduction

This document describes an advanced design for converting natural language text
into SQL queries using Large Language Model (LLM) agents. In addition to SQL
validation and Chain of Thought (CoT) reasoning, this updated design introduces a
Human-in-the-Loop (HITL) component to confirm ambiguous column names or
resolve other query uncertainties. This approach further increases the robustness
and reliability of the system by involving a human to validate critical aspects when
needed, ensuring accurate query generation.

System Overview

Key Components

● LLM Agent: A large language model trained to interpret natural language
questions, apply structured reasoning via CoT, and convert them into SQL
queries.

● Chain of Thought (CoT) Module: Guides the LLM through a logical
reasoning process, helping it break down complex queries step-by-step for
accurate SQL generation.

● SQL Validator: A module that checks the generated SQL query’s syntax,
schema compliance, and overall validity.

● Human-in-the-Loop (HITL) Interface: An interface that requests user
confirmation when the LLM is uncertain about column names, tables, or
ambiguous terms.

● Database: SQL-compliant database like PostgreSQL, MySQL, etc., where
data is queried.

● Agent Manager: Handles the workflow, interactions with the LLM, SQL
Validator, and Human-in-the-Loop, as well as error handling.

Workflow

User Input
The user enters a natural language question, such as *"Show the top customers by
purchase amount and region."*

Chain of Thought Reasoning (CoT)
The Chain of Thought (CoT) module allows the LLM to break down complex queries
into logical steps. This process makes the LLM’s reasoning more transparent and
guides its response to complex or multi-step queries.

sales@booleanwork.co

B o o l e a n w o r k T e c h n o l o g i e s L L P

For example:
- Step 1: Identify metrics: top customers, purchase amount, and region.
- Step 2: Determine necessary aggregations and sorting.

SQL Query Generation with Ambiguity Detection
Using CoT guidance, the LLM generates an SQL query based on its understanding
of the schema. If it detects ambiguity, such as unfamiliar or similar column names, it
flags these terms for verification.

Example SQL:

SQL Validator

The SQL Validator module checks for:

● Syntax Validation: Ensures the SQL query adheres to SQL syntax.
● Schema Validation: Confirms that tables and columns referenced in the

query exist in the database schema.
● Execution Testing: Performs a dry run to validate the query without

modifying the database.

If the SQL Validator detects a schema discrepancy or ambiguity, it triggers the
Human-in-the-Loop (HITL) module to confirm.

Human-in-the-Loop (HITL) Interaction

When an ambiguity in column names or tables is detected, the HITL module
engages a human user to clarify.

● HITL Trigger: The LLM or SQL Validator identifies ambiguous terms or
mismatched columns and flags the query for user review.

● HITL Interface Notification: The user is prompted with a message, such as:

● - “Could you confirm if ‘purchase_amount’ refers to ‘total_amount’ or
‘net_amount’ in the ‘orders’ table?”

● User Selection: The user selects or confirms the correct column names from
a suggested list or manually inputs them.

● Query Regeneration: The LLM refines the SQL query based on the user’s
feedback.

This step ensures that critical ambiguities are resolved before executing the query,
minimizing the risk of incorrect outputs.

Query Executor
Once validated, the SQL query is executed on the database. If no issues are
identifed, the database returns the results based on the user’s request.

Response Formatting
The query results are formatted for a user-friendly presentation, such as a table or
chart, and displayed in the user interface.

System Architecture

Example Walkthrough

User Query: List the top 10 products by sales in Q1 2024, including revenue
and profit.

1. Chain of Thought:
- Step 1: Identify key metrics: top products, sales, revenue, profit.
- Step 2: Define time range for Q1 2024: *2024-01-01 to 2024-03-31*.
- Step 3: Prepare query to aggregate revenue and profit for each product.

2. SQL Query Generation:

3. SQL Validator and HITL Trigger:
● Validation: The SQL Validator detects a potential ambiguity—whether

revenue and *profit* refer to columns *gross_revenue* and
net_profit.

● HITL Request: The system prompts the user with: “Could you confirm
if ‘revenue’ and ‘profit’ should refer to ‘gross_revenue’ and ‘net_profit’
in the ‘sales_data’ table?”

● User Response: The user confirms, and the SQL query is adjusted
based on feedback.

4. Execution: The validated query is executed, and results are returned.

Security and Privacy Considerations

● SQL Injection Prevention: Input sanitization and parameterization prevent
SQL injection attacks.

● Data Privacy: Sensitive data is masked according to role permissions. HITL
interactions are carefully logged to prevent unintentional exposure.

● HITL Audit Logs: Records of user confirmations are stored for
troubleshooting and query auditing.

Previous Projects:
● SQL Generator for Financial Databases: This project automates the

creation of SQL queries tailored for financial databases by leveraging table
schemas and domain-specific knowledge. It ensures accurate,
schema-compliant query generation for tasks like transaction analysis,
account reporting, and auditing, catering to both technical and non-technical
users.

● User Events DB Interactor: This system focuses on retrieving and analyzing
user event data to gain insights into user engagement, sentiment, and
journey. It provides advanced filtering and querying capabilities to extract
meaningful patterns from event data, supporting applications like behavioural
analytics and customer journey mapping.

